Prediksi Volume Penjualan pada Retail Sembako Menggunakan Pemodelan XGBoost
Keywords:
XGBoost, Prediksi Penjualan, Manajemen Inventaris, Retail SembakoAbstract
Manajemen inventaris pada retail sembako menghadapi tantangan ketidakakuratan ramalan permintaan yang menyebabkan overstock atau stockout, sehingga mengganggu efisiensi operasional. Penelitian ini bertujuan mengembangkan model prediksi volume penjualan menggunakan algoritma Extreme Gradient Boosting (XGBoost) untuk meningkatkan akurasi manajemen stok. Metode yang digunakan meliputi akuisisi dan preprocessing data penjualan historis selama satu tahun dari Kaggle.com untuk empat kategori produk: Air Mineral, Minyak Goreng, Susu, dan Roti. Data tersebut kemudian dibagi menjadi data latih (80%) dan data uji (20%) untuk melatih model XGBoost. Kinerja prediktif model dievaluasi secara kuantitatif menggunakan metrik Root Mean Squared Error (RMSE). Hasil penelitian menunjukkan bahwa model XGBoost mampu memprediksi volume penjualan dengan tingkat akurasi yang bervariasi. Performa terbaik dicapai pada produk dengan permintaan stabil seperti Roti (RMSE 5.54) dan Minyak Goreng (RMSE 6.78) , sementara performa lebih rendah teridentifikasi pada produk dengan permintaan sangat fluktuatif seperti Air Mineral (RMSE 16.04) dan Susu (RMSE 12.24). Sebagai solusi praktis untuk menutupi kelemahan prediksi, strategi penambahan alert range terbukti mampu meningkatkan tingkat pemenuhan permintaan secara signifikan. Sebagai contoh, penambahan 15 unit pada prediksi Roti mampu mencapai pemenuhan permintaan hingga 100% , sementara penambahan 20 unit pada Susu meningkatkan pemenuhan hingga 97,22%. Kombinasi antara prediksi XGBoost dan strategi alert range terbukti memiliki potensi besar dalam mengoptimalkan manajemen inventaris.
References
Díaz Lara, M. I., & Pusma Huachez, M. J. (2024). Logistics optimization and inventory control in Peruvian grocery companies. Sapienza: International Journal of Interdisciplinary Studies, 5(3), e24061. https://doi.org/10.51798/sijis.v5i3.788
Dong, W., Huang, Y., Lehane, B., & Ma, G. (2020). XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, 114, 103155. https://doi.org/10.1016/j.autcon.2020.103155
El Morr, C., Jammal, M., Ali-Hassan, H., & El-Hallak, W. (2022). Data Preprocessing. In C. El Morr, M. Jammal, H. Ali-Hassan, & W. EI-Hallak, Machine Learning for Practical Decision Making (Vol. 334, pp. 117–163). Springer International Publishing. https://doi.org/10.1007/978-3-031-16990-8_4
Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Hu, L., & Han, W. (2024). Research on Supply Chain Demand Forecasting and Dynamic Adjustment Model Based on Big Data and Artificial Intelligence. 2024 International Conference on Interactive Intelligent Systems and Techniques (IIST), 153–159. https://doi.org/10.1109/iist62526.2024.00100
Khashu, K. (2025). Overstocking in Healthcare: Challenges and Strategic Solutions Leveraging Process and Technology Advancements. International Journal for Research in Applied Science and Engineering Technology, 13(1), 120–123. https://doi.org/10.22214/ijraset.2025.66200
Lutoslawski, K., Hernes, M., Radomska, J., Hajdas, M., Walaszczyk, E., & Kozina, A. (2021). Food Demand Prediction Using the Nonlinear Autoregressive Exogenous Neural Network. IEEE Access, 9, 146123–146136. https://doi.org/10.1109/access.2021.3123255
Sangeetha G, Mr. Harshavardhan S V, Mr. Allen Joshua L, & Mr. Anirudh S M. (2024). Predictive Analysis for Supply Chain Management Using Extreme Gradient Boost Classifier. International Journal of Advanced Research in Science, Communication and Technology, 531–534. https://doi.org/10.48175/ijarsct-15987
Murdiansyah, D. T. (2024). Prediksi Stroke Menggunakan Extreme Gradient Boosting. JIKO (Jurnal Informatika Dan Komputer), 8(2), 419. https://doi.org/10.26798/jiko.v8i2.1295
Pang, Y., Wang, X., Tang, Y., Guobin, G., Chen, J., Yang, B., Ning, L., Bao, C., Zhou, S., Cao, X., & Wen, X. (2024). A traffic accident early warning model based on XGBOOST. In Q. Lu & W. Zhang (Eds.), Fourth International Conference on Advanced Algorithms and Neural Networks (AANN 2024) (p. 120). SPIE. https://doi.org/10.1117/12.3049832
R, M. R. V. V., N, S., Shankar Reddy, S., Rao Kurada, R., Mahaboob Hussain, S., & L Sameera, E. (2023). A Robust XG-Boost Machine Learning Model for Water Quality Estimation System by Leveraging with Chi-Square Forward Sequential Feature Selection Technique. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 1–7. https://doi.org/10.1109/aikiie60097.2023.10390370
Raghuram, P., S, B., Manivannan, R., Anand, P. S. P., & Sreedharan, V. R. (2023). Modeling and Analyzing the Inventory Level for Demand Uncertainty in the VUCA World: Evidence From Biomedical Manufacturer. IEEE Transactions on Engineering Management, 70(8), 2944–2954. https://doi.org/10.1109/tem.2022.3201440
Rakholia, K. R., Chandraprabh, C., Ramesh, R., Rao, Kolli. S., Punitha, S., & Kumar, M. G. V. (2025). Optimizing Inventory Management Through Demand Forecasting: A Data-Driven Approach for Enhanced Supply Chain Efficiency. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5076111
Sabah Salih, H., Ghazi, M., & Aljanabi, M. (2023). Implementing an Automated Inventory Management System for Small and Medium-sized Enterprises. Iraqi Journal for Computer Science and Mathematics, 238–244. https://doi.org/10.52866/ijcsm.2023.02.02.021
Shrivastava, A., Kotiyal, A., Habelalmateen, M. I., Rana, A., Devi, V. S. A., Rao, B. D., & Bansal, S. (2024). Leveraging XGBoost for Predictive Analytics in Healthcare: Enhancing Disease Diagnosis. 2024 7th International Conference on Contemporary Computing and Informatics (IC3I), 1666–1672. https://doi.org/10.1109/IC3I61595.2024.10829136
Sim, D. Y. Y., & Wei, Z. (2023). XGBoost Regression Algorithms for Efficient Predictions on Inventory Sales and Management. 2023 6th International Conference on Electronics and Electrical Engineering Technology (EEET), 66–71. https://doi.org/10.1109/EEET61723.2023.00033
Singh, A. K., Kumar, P., Ali, R., Al-Ansari, N., Vishwakarma, D. K., Kushwaha, K. S., Panda, K. C., Sagar, A., Mirzania, E., Elbeltagi, A., Kuriqi, A., & Heddam, S. (2022). An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability, 14(13), 8209. https://doi.org/10.3390/su14138209
Sivaraman, H. (2024). Adaptive Thresholding in ML-Driven Alerting Systems for Reducing False Positives in Production Environment. INTERTANIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 08(12), 1–6. https://doi.org/10.55041/ijsrem11938
Sun, X., Xu, Z., Feng, Y., Yang, Q., Xie, Y., Wang, D., & Yu, Y. (2021). RBC Inventory-Management System Based on XGBoost Model. Indian Journal of Hematology and Blood Transfusion, 37(1), 126–133. https://doi.org/10.1007/s12288-020-01333-5
Time Series Forecasting in Retail Sales Using LSTM and Prophet. (2021). In C. Junior, P. Gusmão, J. Moreira, & A. M. M. Tome, Advances in Business Information Systems and Analytics (pp. 241–262). IGI Global. https://doi.org/10.4018/978-1-7998-6985-6.ch011
Tuan Ngoc Nguyen, Mahfuz Haider, Afjal Hossain Jisan, Md Azad Hossain Raju, Touhid Imam, Md Munsur Khan, & Abdullah Evna Jafar. (2024). Product Demand Forecasting with Neural Networks and Macroeconomic Indicators: A Comparative Study among Product Categories. Journal of Business and Management Studies, 6(2), 170–175. https://doi.org/10.32996/jbms.2024.6.2.17
Uche Nweje & Moyosore Taiwo. (2025). Leveraging Artificial Intelligence for predictive supply chain management, focus on how AI- driven tools are revolutionizing demand forecasting and inventory optimization. International Journal of Science and Research Archive, 14(1), 230–250. https://doi.org/10.30574/ijsra.2025.14.1.0027


